Development of Model Metal Oxide Electrode Interfaces for Electrochemical Energy Investigations

Matthew Charlton – 4th yr Ph.D. student in Materials Sci. & Engr, Advised by Prof. Stevenson

Typical Li-Ion Battery Cathode Structure*

(Heterogeneous/disordered)

Mixed Mechanism Lithiation+

Atomic Layer Deposition (ALD)

TiO$_2$/C Electrode by ALD

Goal: Develop and evaluate model material systems using ALD that facilitate high resolution analysis of interfacial charge transfer processes.

Development of Model Metal Oxide Electrode Interfaces for Electrochemical Energy Investigations

Newly Available Analysis Techniques:
- *in situ* Spectrophotometry
- Spectroscopic Ellipsometry
- Thickness-scale correlated mechanism deconvolution
- High resolution, spatially resolved chemical analysis – TOF SIMS

- All can be adopted for different ALD-based material systems

Surprising ToF SIMS Results
- F\(^{-}\) detected throughout the TiO\(_2\) layer
- Likely related to HF formation (from LiPF\(_6\) + H\(_2\)O)
- Contrary to accepted Ti\(^{4+}\) reduction scheme

CV of Li-TiO\(_2\) Electrode

Secondary Ion Mass Spec: Reversible F\(^{-}\) anion co-intercalation

CV of Li-TiO\(_2\) Electrode

1M (LiPF\(_6\)) in 1:1 EC:DEC

Li-ion Battery

Surprising ToF SIMS Results

After Lithium Insertion

After Lithium Extraction