A materials-based assessment of distribution-level grid energy storage

Robert L. Fares
Advisor: Michael E. Webber

Technology of interest:

- 25 kW power capability
- 25 – 75 kWh energy capacity
- Li-ion chemistry

Research objectives:

- Model the performance and degradation of various Li-ion battery chemistries
- Analyze the value of community energy storage operating as a “virtual power plant”
- Employ a bottom-up cost model for lithium-ion battery systems
- Assess the cost-benefit tradeoffs of distributed, Li-ion grid energy storage.
Fundamental material properties determine cost-benefit tradeoffs