Control-Oriented Model Improvements for Hydrogen Fuel Cells

Alexander J. Headley
Advised by Dongmei "Maggie" Chen
Department of Mechanical Engineering
The University of Texas at Austin

January 10, 2013

Motivation

- Proton-Exchange-Membrane (PEM) fuel cells are becoming more common
 - Toyota, Hyundai, and Honda all have plans for fuel cell vehicles
- Control of the fuel cell is challenging
 - High sensitivity to humidity and temperature changes
 - Need comprehensive control-oriented models

Current Modeling Techniques

- There are 2 major areas of research in fuel cell modeling
 - Computational Fluid Dynamics models
 - Lumped value models
- Lumped models lose key information
 - Inlet effects
 - Outlet flooding
 - Often these areas are limiting to performance

Hybrid Modeling Approach

- Relative Humidity can change significantly along the stack
 - Can have dehydration at the inlet, and flooding at the exit
 - A single control volume (CV) is not a good representation
- Use a series of control volumes

Effect of Using Multiple CVs

Questions?

